首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59639篇
  免费   1754篇
  国内免费   1363篇
  2023年   350篇
  2022年   529篇
  2021年   1657篇
  2020年   716篇
  2019年   966篇
  2018年   775篇
  2017年   529篇
  2016年   1107篇
  2015年   2971篇
  2014年   6183篇
  2013年   5266篇
  2012年   4514篇
  2011年   5158篇
  2010年   3611篇
  2009年   3022篇
  2008年   3089篇
  2007年   3392篇
  2006年   2050篇
  2005年   1739篇
  2004年   978篇
  2003年   752篇
  2002年   678篇
  2001年   470篇
  2000年   434篇
  1999年   448篇
  1998年   386篇
  1997年   302篇
  1996年   377篇
  1995年   499篇
  1994年   424篇
  1993年   471篇
  1992年   427篇
  1991年   451篇
  1990年   392篇
  1989年   402篇
  1988年   402篇
  1987年   329篇
  1986年   293篇
  1985年   508篇
  1984年   814篇
  1983年   525篇
  1982年   697篇
  1981年   695篇
  1980年   506篇
  1979年   509篇
  1978年   310篇
  1977年   336篇
  1976年   304篇
  1974年   224篇
  1973年   227篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
102.
The pulmonary innate immune system is heavily implicated in the perpetual airway inflammation and impaired host defense characterizing Chronic Obstructive Pulmonary Disease (COPD). The airways of patients suffering from COPD are infiltrated by various immune and inflammatory cells including macrophages, neutrophils, T lymphocytes, and dendritic cells. While the role of macrophages, neutrophils and T lymphocytes is well characterized, the contribution of dendritic cells to COPD pathogenesis is still the subject of emerging research. A paper by Botelho and colleagues in the current issue of Respiratory Research investigates the importance of dendritic cell recruitment in cigarette-smoke induced acute and chronic inflammation in mice. Dendritic cells of the healthy lung parenchyma and airways perform an important sentinel function and regulate immune homeostasis. During inflammatory responses the function and migration pattern of these cells is dramatically altered but the underlying mechanisms are incompletely understood. Botelho and colleagues demonstrate here the importance of IL-1R1/IL-1α related mechanisms including CCL20 production in cigarette-smoke induced recruitment of dendritic cells and T cell activation in the mouse lung.  相似文献   
103.
Segregation of resistance to Meloidogyne arenaria in six BC₅F₂ peanut breeding populations was examined in greenhouse tests. Chi-square analysis indicated that segregation of resistance was consistent with resistance being conditioned by a single gene in three breeding populations (TP259-3, TP262-3, and TP271-2), whereas two resistance genes may be present in the breeding populations TP259-2, TP263-2, and TP268-3. Nematode development in clonally propagated lines of resistant individuals of TP262-3 and TP263-2 was compared to that of the susceptible cultivar Florunner. Juvenile nematodes readily penetrated roots of all peanut genotypes, but rate of development was slower (P = 0.05) in the resistant genotypes than in Florunner. Host cell necrosis indicative of a hypersensitive response was not consistently observed in resistant genotypes of either population. Three RFLP loci linked to resistance at distances of 4.2 to 11.0 centiMorgans were identified. Resistant and susceptible alleles for RFLP loci R2430E and R2545E were quite distinct and are useful for identifying individuals homozygous for resistance in segregating populations.  相似文献   
104.
One model for the timing of cytokinesis is based on findings that p34(cdc2) can phosphorylate myosin regulatory light chain (LC20) on inhibitory sites (serines 1 and 2) in vitro (Satterwhite, L.L., M.H. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), and this inhibition is proposed to delay cytokinesis until p34(cdc2) activity falls at anaphase. We have characterized previously several kinase activities associated with the isolated cortical cytoskeleton of dividing sea urchin embryos (Walker, G.R., C.B. Shuster, and D.R. Burgess. 1997. J. Cell Sci. 110:1373-1386). Among these kinases and substrates is p34(cdc2) and LC20. In comparison with whole cell activity, cortical H1 kinase activity is delayed, with maximum levels in cortices prepared from late anaphase/telophase embryos. To determine whether cortical-associated p34(cdc2) influences cortical myosin II activity during cytokinesis, we labeled eggs in vivo with [(32)P]orthophosphate, prepared cortices, and mapped LC20 phosphorylation through the first cell division. We found no evidence of serine 1,2 phosphorylation at any time during mitosis on LC20 from cortically associated myosin. Instead, we observed a sharp rise in serine 19 phosphorylation during anaphase and telophase, consistent with an activating phosphorylation by myosin light chain kinase. However, serine 1,2 phosphorylation was detected on light chains from detergent-soluble myosin II. Furthermore, cells arrested in mitosis by microinjection of nondegradable cyclin B could be induced to form cleavage furrows if the spindle poles were physically placed in close proximity to the cortex. These results suggest that factors independent of myosin II inactivation, such as the delivery of the cleavage stimulus to the cortex, determine the timing of cytokinesis.  相似文献   
105.
 In gynodioecious species, females contribute genes to future generations only through ovules, and to persist in populations they must have a compensatory advantage compared with hermaphrodites that reproduce via ovules and pollen. This compensation can result from greater fecundity and/or superior success of progeny from females. We examined differences in seed production and progeny success between females and hermaphrodites in the geophyte Wurmbea biglandulosa to explain the maintenance of females. Females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites but this did not necessarily result in greater fecundity, in part because seed production of females was pollen-limited. Over four years in one population, open-pollinated females produced 1.32 more seeds than open-pollinated hermaphrodites (range 1.09–1.63). In two other populations examined for one year only females produced 1.07 and 0.79 as many seeds as hermaphrodites. Seed production of open-pollinated females and hermaphrodites was only 55% and 73% that of cross-pollinated plants, respectively, indicating that both genders were pollen-limited but females more so than hermaphrodites. Open-pollinated seeds from females were 1.18–1.27 times more likely to germinate than seeds from hermaphrodites. No gender differences existed in seedling growth or survival. Hermaphrodites were self-compatible, but selfed seed set was only 80% that of crossed seed set. Crossed seed set of females and hermaphrodites did not differ. Assuming nuclear control of male sterility, relative female fitness is insufficient to maintain females at their current frequencies of 17%, and substantial female fitness advantages at later life-cycle stages are required. Received May 4, 2001 Accepted February 25, 2002  相似文献   
106.
107.
Foxtail millet (Pennisetum glaucum L.) is a vital crop that is planted as food and fodder crop around the globe. There is only limited information is present for abiotic stresses on the physiological responses to atrazine. A field experiment was conducted to investigate the effects of different atrazine dosages on the growth, fluorescence and physiological parameters i.e., malonaldehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2) in the leaves to know the extent of atrazine on oxidative damage of foxtail millet. Our experiment consisted of 0, 2.5, 12.5, 22.5 and 32.5 (mg/kg) of labeled atrazine doses on 2 foxtaill millet varieties. High doses of atrazine significantly enhanced ROS and MDA synthesis in the plant leaves. Enzymes activities like ascorbate peroxidase (APX) and peroxidase (POD) activities enhanced, while catalase (CAD) and superoxide dismutase (SOD) activities reduced with increasing atrazine concentrations. Finally atrazine doses at 32.5 mg/kg reduced chlorophyll contents, while chlorophyll (a/b) ratio also enhanced. Biomass, plant height, chlorophyll fluorescence parameters, minimal and maximal fluorescence (Fo, Fm), maximum and actual quantum yield, photochemical quenching coefficient, and electron transport rate are decreased with increasing atrazine doses.  相似文献   
108.
Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor–related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose–response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes.  相似文献   
109.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
110.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号